Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Acta Pharm Sin B ; 2023 Feb 23.
Article in English | MEDLINE | ID: covidwho-2268740

ABSTRACT

COVID-19 has globally spread to burden the medical system. Even with a massive vaccination, a mucosal vaccine offering more comprehensive and convenient protection is imminent. Here, a micro-sized vaccine based on recombinant Lactiplantibacillus plantarum (rLP) displaying spike or receptor-binding domain (RBD) was characterized as microparticles, and its safety and protective effects against SARS-CoV-2 were evaluated. We found a 66.7% mortality reduction and 100% protection with rLP against SARS-CoV-2 in a mouse model. The histological analysis showed decreased hemorrhage symptoms and increased leukocyte infiltration in the lung. Especially, rLP:RBD significantly decreased pulmonary viral loads. For the first time, our study provides a Lactiplantibacillus plantarum-vectored vaccine to prevent COVID-19 progress and transmission via intranasal vaccination.

2.
Molecules ; 27(23)2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2143394

ABSTRACT

Humanity has suffered from the coronavirus disease 2019 (COVID-19) pandemic over the past two years, which has left behind millions of deaths. Azithromycin (AZ), an antibiotic used for the treatment of several bacterial infections, has shown antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as against the dengue, Zika, Ebola, and influenza viruses. Additionally, AZ has shown beneficial effects in non-infective diseases such as cystic fibrosis and bronchiectasis. However, the systemic use of AZ in several diseases showed low efficacy and potential cardiac toxicity. The application of nanotechnology to formulate a lung delivery system of AZ could prove to be one of the solutions to overcome these drawbacks. Therefore, we aimed to evaluate the attenuation of acute lung injury in mice via the local delivery of an AZ nanoformulation. The hot emulsification-ultrasonication method was used to prepare nanostructured lipid carrier of AZ (AZ-NLC) pulmonary delivery systems. The developed formulation was evaluated and characterized in vitro and in vivo. The efficacy of the prepared formulation was tested in the bleomycin (BLM) -mice model for acute lung injury. AZ-NLC was given by the intratracheal (IT) route for 6 days at a dose of about one-eighth oral dose of AZ suspension. Samples of lung tissues were taken at the end of the experiment for immunological and histological assessments. AZ-NLC showed an average particle size of 453 nm, polydispersity index of 0.228 ± 0.07, zeta potential of -30 ± 0.21 mV, and a sustained release pattern after the initial 50% drug release within the first 2 h. BLM successfully induced a marked increase in pro-inflammatory markers and also induced histological changes in pulmonary tissues. All these alterations were significantly reversed by the concomitant administration of AZ-NLC (IT). Pulmonary delivery of AZ-NLC offered delivery of the drug locally to lung tissues. Its attenuation of lung tissue inflammation and histological injury induced by bleomycin was likely through the downregulation of the p53 gene and the modulation of Bcl-2 expression. This novel strategy could eventually improve the effectiveness and diminish the adverse drug reactions of AZ. Lung delivery could be a promising treatment for acute lung injury regardless of its cause. However, further work is needed to explore the stability of the formulation, its pharmacokinetics, and its safety.


Subject(s)
Acute Lung Injury , COVID-19 , Nanostructures , Zika Virus Infection , Zika Virus , Mice , Animals , Drug Carriers/pharmacokinetics , Lipids , Azithromycin/pharmacology , SARS-CoV-2/metabolism , Particle Size , Acute Lung Injury/drug therapy , Zika Virus/metabolism , Drug Delivery Systems/methods
3.
Int J Pharm ; 620: 121757, 2022 May 25.
Article in English | MEDLINE | ID: covidwho-1796680

ABSTRACT

Pulmonary diseases are currently one of the major threats of human health, especially considering the recent COVID-19 pandemic. However, the current treatments are facing the challenges like insufficient local drug concentrations, the fast lung clearance and risks to induce unexpected inflammation. Cell-derived membrane biomimetic nanocarriers are recently emerged delivery strategy, showing advantages of long circulation time, excellent biocompatibility and immune escape ability. In this review, applications of using cell-derived membrane biomimetic nanocarriers from diverse cell sources for the targeted therapy of pulmonary disease were summarized. In addition, improvements of the cell-derived membrane biomimetic nanocarriers for augmented therapeutic ability against different kinds of pulmonary diseases were introduced. This review is expected to provide a general guideline for the potential applications of cell-derived membrane biomimetic nanocarriers to treat pulmonary diseases.


Subject(s)
Biomimetic Materials , COVID-19 Drug Treatment , Nanoparticles , Biomimetics , Cell Membrane/metabolism , Drug Carriers/metabolism , Drug Delivery Systems , Humans , Pandemics
4.
Mol Ther ; 30(5): 1994-2004, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1612107

ABSTRACT

Adeno-associated virus (AAV)-mediated gene delivery holds great promise for gene therapy. However, the non-invasive delivery of AAV for lung tissues has not been adequately established. Here, we revealed that the intratracheal administration of an appropriate amount of AAV2/8 predominantly targets lung tissue. AAV-mediated gene delivery that we used in this study induced the expression of the desired protein in lung parenchymal cells, including alveolar type II cells. We harnessed the technique to develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-susceptible mice. Three kinds of immune function-relevant gene knockout (KO) mice were transduced with AAV encoding human angiotensin-converting enzyme 2 (hACE2) and then injected with SARS-CoV-2. Among these mice, type I interferon receptor (IFNAR) KO mice showed increased viral titer in the lungs compared to that in the other KO mice. Moreover, nucleocapsid protein of SARS-CoV-2 and multiple lesions in the trachea and lung were observed in AAV-hACE2-transduced, SARS-CoV-2-infected IFNAR KO mice, indicating the involvement of type I interferon signaling in the protection of SARS-CoV-2. In this study, we demonstrate the ease and rapidness of the intratracheal administration of AAV for targeting lung tissue in mice, and this can be used to study diverse pulmonary diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , COVID-19/therapy , Dependovirus/genetics , Disease Models, Animal , Disease Susceptibility , Lung/pathology , Mice , Mice, Transgenic , SARS-CoV-2/genetics
5.
Adv Ther (Weinh) ; 3(12): 2000153, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-796069

ABSTRACT

Ion-pairing a lifesaving drug such as theophylline with a targeting moiety could have a significant impact on medical emergencies such as status asthmaticus or COVID-19 induced pneumomediastinum. However, to achieve rapid drug targeting in vivo the ion-pair must be protected against breakdown before the entry into the target tissue. This study aims to investigate if inserting theophylline, when ion-paired to the polyamine transporter substrate spermine, into a cyclodextrin (CD), to form a triplex, could direct the bronchodilator to the lungs selectively after intravenous administration. NMR demonstrates that upon the formation of the triplex spermine protruded from the CD cavity and this results in energy-dependent uptake in A549 cells (1.8-fold enhancement), which persists for more than 20 min. In vivo, the triplex produces a 2.4-fold and 2.2-fold increase in theophylline in the lungs 20 min after injection in rats and mice, respectively (p < 0.05). The lung targeting is selective with no increase in uptake into the brain or the heart where the side-effects of theophylline are treatment-limiting. Selectively doubling the concentration of theophylline in the lungs could improve the benefit-risk ratio of this narrow therapeutic index medicine, which continues to be important in critical care.

SELECTION OF CITATIONS
SEARCH DETAIL